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A Simple and Modular Strategy for Small Molecule Synthesis:
—Miyaura Coupling of B-Protected Haloboronic Acid Building Blocks
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Most of the functional molecules found in living systems, in-
cluding most “small molecules”, are biosynthesized via iterative
coupling of bifunctional building blocks. Polypeptidesligonucle-
otides? and to a growing extent oligosacchariélean be similarly
prepared in the laboratory via simple oligomerization of suitably
protected versions of their constituent monomers. Analogous
approaches involving iterative cross-coupling of bifunctional arenes
have greatly facilitated the preparation of oligoarene-type polyfners.

These types of processes are now routinely automated. In stark

contrast, the laboratory synthesis of small molecules remains a
relatively inefficient and nonsystematized process. The Suzuki-
Miyaura (SM) reactioh between an organohalide and a boronic
acid represents a powerful, functional group tolerant, and increas-
ingly general method for €C bond formation in complex molecule
synthesi$. We herein report a simple and highly modular strategy
for making small molecules via iterative SM coupling of bifunc-
tional haloboronic acidbuilding blocks (eq 1Y.
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Realizing the proposed iterative cycle of-C bond formation in

the context of small molecule synthesis required the discovery of a
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ligand for boronic acids that can attenuate transmetalation under var-
ious SM conditions and then be cleaved using mild reagents. Current
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boronate esté? 3awere reacted witlp-bromobenzaldehyde under
Buchwald’s anhydrous SM conditioti{Table 1). Gratifyingly, a
24:1 ratio of biarylss and6 was observed, consistent with strong
preferential reactivity with the $ghybridized boronic aci@ (entry
1). The control experiment witp-tolylboronic acid3b yielded a
1:1 mixture of products (entry 2). Sterically bulltalkyl substitu-
tion was tolerated but not significantly advantageous (entry 3).
N-Methyl diethanolamine adducts such3as which are known to
be significantly less conformationally rigid than their iminodiacetic
acid counterpart&c demonstrated no selectivity (entry 4). To the
best of our knowledge, this type of reactivity attenuation with
neutral, sp-hybridized boronate esters is unprecedented, and further
studies into the nature and potentially broad utility of this effect
are ongoing? Strikingly, although these boronate esters are
protected from anhydrous SM coupling even at°@for 28 h,
deprotection can be achied at 23°C using extremely mild aqueous
basic conditions, such asM aq NaOH/THF, 10 min, or even aq
NaHCQOy/MeOH, 6 h (see below).

A variety of haloboronic acids were complexed with MIDA to

data suggest that transmetalation between boronic acids and Pd(llyield a series of B-protected bifunctional building blocks (eq 3).

requires formation of an electronically activattonicboron “ate”
complex and/or a hydroxe,-bridged organoboronatéd(ll) inter-
mediate? Both mechanisms necessitate a vacant and Lewis acidic
boron p-orbital. Bidentate ligands that contain strongly electron-
donating heteroatoms are known to inhibit the cross-coupling of
organoboron compounds, presumably by reducing the Lewis acidity
of the sp-hybridized boron centé® Harnessing this effect, others
have reported a few selective cross-couplings with B-protected
organoboranes that contain halogéii$iese types of heteroatem
boron bonds tend to be very strofthowever, and the relatively
harsh conditions required for cleaving these ligands are generally
incompatible with complex molecule synthesis. We envisioned an
alternative approach for reactivity attenuation involving rehybrid-
ization of the boron center from 3o s@# via complexation with

a trivalent ligand. We further anticipated that such a ligand might
be cleavable using relatively mild reagents because hetereatom
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All three positional isomers of bromophenyl boronlc acid as well
as the heteroaromatic 5-bromothiopheneboronic acid reacted cleanly
to generate8a—d in excellent yields. The same complexation
conditions yielded vinyl and alkyl boronate est@esand8f. The
pyramidalized nature of th&{—B)-vinyl-[ N-methyliminodiacetate-
0,0',NJborane8ewas confirmed via single-crystal X-ray diffraction

boron bonds in tetrahedral adducts are predicted to be weaker tharanalysis'? Remarkably, these pyramidalized boronate esters are

those in their tricoordinate counterpals! We herein report the
realization of these expectations using the commercially available
trivalent ligand,N-methyliminodiacetic acid (MIDAL; eq 2).

To test the hypothesis that boron pyramidalization will inhibit
cross-coupling, stoichiometric quantities of boronic aRicand
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stable to and readily purified by silica gel chromatography (all yields
in eq 3 represent materials isolated as analytically pure, colorless
crystalline solids after a single chromatographic step). Moreover,
in stark contrast to the corresponding boronic aétds] of these
boronate esters are indefinitely bench stable under air
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aThe same yield was observed whether this reaction was set up in the
glovebox or in the air? B-Deprotection was also achieved with ag NaHCO
MeOH, 23°C, 6 h, 85%.¢ 2-(Dicyclohexylphosphino)-24',6 -triisopropyl-
1,2-biphenyl was used instead 4b.

(+) 10f

The potential of the MIDA ligand to enable selective cross-
couplings was probed by reacting each of these B-protected
bifunctional building blocks withp-tolylboronic acid (Table 2).
Although the reactivity of aryl, heteroaryl, vinyl, and alkyl boronic
acids can vary dramaticalfy,the same protecte group was
effectve with all four classes of nucleophilgselding selective
cross-coupling produc&a—f. All four classes of nucleophiles were
also efficiently deprotected using a standard set of mild aqueous
basic conditions (1 M ag NaOH/THF, Z&, 10 min). Aqueous
NaHCG; is also effective (entry 3).

The strategy described herein is distinguished from related
lynchpin-based approaches by its theoretically limitless potential
for iteration. To begin exploration of this potential and the compati-
bility of this mild protective group methodology with small molecule
substrates, we targeted the first total synthesis of the natural produc
ratanhine 11) (eq 4), the most complex member of a large family
of neolignans isolated from the medicinal plétdatanhiae radi®4

Retrosynthetic fragmentation dfl into four simpler building
blocks12—15 was achieved via recursive application of three SM
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As demonstrated herein, this iterative cross-coupling strategy can
dramatically simplify the process of small molecule synthesis. This
natural product was prepared using a single mild reaction iteratively
to bring together a collection of easily synthesized, readily purified,
and highly robust building blocks. The synthesis is sWoand
highly modular, and thus a variety of derivatives should be readily
accessible simply by substituting modified building blocks into the
same pathway. Further studies will pursue the inherent adaptability
of these methods to solid-phase and/or automated techniques.
Although certain small molecules are at present more amenable to
this approach than others, the rapidly expanding scope of the SM
reaction, which increasingly includes®sgsp® couplingst’ suggests
significant potential for broad generality.
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